
Artificial intelligence (AI) is rapidly advancing in healthcare, but testing these technologies is a complex process that requires careful consideration. Devin Singh, a pediatric resident, experienced firsthand the devastating consequences of long wait times in emergency departments. This motivated him to explore how AI could help reduce these delays.
Singh and his colleagues developed AI models using data from the Hospital for Sick Children in Toronto. These models provide potential diagnoses and indicate which tests may be needed for patients. A study using retrospective data suggested that these models could expedite care for over 20% of emergency department visits, reducing wait times by nearly three hours for each person requiring medical tests.
However, the success of an AI algorithm in a study is only the first step in determining its real-world effectiveness. Proper testing of AI in medicine involves a multiphase process, but few developers publish the results of these analyses. Meanwhile, regulators like the FDA have approved hundreds of AI-powered medical devices for use in hospitals and clinics, often with less rigorous criteria than those for drugs.
Previous Post
Us economy added 818,000 fewer jobs
Next Post